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Abstract-In order to adequately reproduce the thermo-mechanical behaviour ofmetals under finite
volume reduction and large temperature increase, it is necessary to use the second order thermo
clastic analysis, i.e. to use the free energy function expanded up to the third degree in strain and
temperature. Determination of the corresponding material constants is given and the resulting
expressions are applied to the adiabatic compression of aluminum. The results are compared with
those obtained from the first order theory.

1. INTRODUCTION

The behaviour of metals subjected to high pressures, such as those produced by explosive
loadings, has long been a subject of special interest[I-5]. The volume reduction caused by
pressures in the range of 10-30 GPa can be of the order of25%. Such a large (finite) volume
reduction is followed by a rise in temperature of about 100-200 K, depending on material
and applied pressure. In this temperature range the thermal characteristics of materials
(like the coefficients of thermal expansion and specific heat) are not constant and in order
to reproduce their variation adequately, it is necessary to include the terms of higher order
than second in the expression for the free energy. Also, large geometry (volume) changes
demand the use offinite strain which therefore, together with the previous, leads to nonlinear
thermo-elastic analysis. In this paper we consider its second order approximation. The
determination of the material constants which appear in the expansion of the free energy
function is done by using the experimental data and results from the solid state physics
theory which accurately represents the thermal effects of many metals. On the basis of
developed expressions, some specific results are obtained in the case of aluminum which is
rapidly (adiabatically) compressed. The comparison with the results obtained by using the
first order theory is also given.

2. PRELIMINARY THERMODYNAMIC ANALYSIS

We consider a homogeneous material which is subjected to high uniform pressure.
Many tests have shown that such a material can sustain enormous pressures and still remain
elastic. According to the first law of thermodynamics the increase of the specific internal
energy (or internal energy per unit mass of the system) is produced by the corresponding
work done and heat input to the system (per unit mass), Le.

I
du = - -p dV+Td'7,

pV
(2.1 )

where dw = - (lip) p (dVIV) is the specific work associated with the change of volume dV
(p is the pressure, p is the density and V is the volume), while the specific heat input is
dq = T d'7, where T is the absolute temperature and '7 is the specific entropy, since hydro
static compression is elastic (recoverable). Introducing the Helmholtz free energy (per unit
mass) t/J = u-'7T, (2.1) can be rewritten as

I
dt/J = - pV P dV-'7 dT,

1517

(2.2)
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which is the form of the first law of thermodynamics that is convenient in the subsequent
analysis, where we use the Helmholtz free energy as a potential function. Indeed, since we
are dealing with hydrostatic compression, which is purely (thermo-)elastic deformation, the
free energy is a function of only two state variables, which completely define the state, the
volume V and temperature T, i.e.1jJ = 1jJ( V, T). Introducing further the free energy per unit
initial volume Ji = Ji(V, T) then

I _
IjJ = -1jJ(V, T),

Po

where Po is the initial density of the body. Applying the differential on (2.3), we have

(2.3)

(2.4)

so that comparison with (2.2) gives the usual expressions for the pressure and entropy:

P aJi I aJi
p= --V-, 1]= ---

Po av Po aT' (2.5)

However, in dealing with finite volume compressions it is convenient to use the log
arithmic strain c = In (V/V0) as a measure of volume change[5, 6], and if we also introduce
the relative (dimensionless) temperature change e= (T - To)/To, where Voand To are the
initial volume and temperature, then we have Ji = Ji( V, T) = ~(c, e), and by the chain
rule differentiation we obtain from (2.5) :

(2.6)

The first of expressions (2.6) was utilized in [6] in establishing the isothermal pressure
volume relation at high pressures, where ~ (there interpreted as a strain energy) is approxi
mated by a second and third order polynomial in strain c. The results were compared with
Murnaghan's results[2] in the case of Bridgman's experimental data for the metal sodium[I],
and the differences were critically examined. In the next section we shall analyse and
establish the polynomial representation (expression) for the free energy function which is
suitable in the case of large volume and temperature changes.

3. EXPRESSION FOR THE FREE ENERGY FUNCTION AND DETERMINAnON OF MATERIAL
CONSTANTS

The classical linear thermoelasticity equations are obtained by taking the free energy
function to be a polynomial up to the second degree in strains and temperature. In the case
of hydrostatic loading this means that ~ is of the form

(3.1 )

where aO-c2 are constants. The free energy expansion (3.1) leads to thermoelastic relations
which are appropriate in the range of sufficiently small pressures and temperature increases.
Ifwe are, however, dealing with the pressures large enough to produce finite volume changes
(say, 25%) and large temperature changes (say, 100-200 K, such as those produced by
explosive loadings), thermo-mechanical behaviour of the solid is such that, for its accurate
description, we also need to take the third order terms in strain and temperature in the
expression for the free energy function, i.e.
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The corresponding expressions for the pressure and entropy follow on substituting (3.2)
into (2.6):

(3.3)

(3.4)

Taking pressure and entropy to be zero at zero strain (e = 0) and initial temperature
(T= To, 0 = 0), the constants al and Cl are equal to zero. The constant ao in (3.2) is an
arbitrary value of the initial free energy function, and can also be taken to be zero. The
remaining seven constants can be determined as follows. First, consider an isothermal bulk
test (0 = 0) under small strain

then

(3.5)

and therefore 2a2 is equal to the initial bulk modulus of the material (Ko). To get the
constant a3 we need to consider the isothermal bulk test at large strain, in which case

(3.6)

The constant a3 now can be obtained by comparing expression (3.6) with the experimental
data for pressure-volume relation at extreme pressures. For example, for sodium metal
such data were obtained by Bridgman[l] and were used by Mumaghan[2] to determine the
second order elastic constant in his theory which is based on Lagrangian strain, rather than
logarithmic strain. In our case, i.e. with relation (3.6) as a pressure-volume relation, the
second order elastic constant a3 for sodium is determined in [6]. Determination of the
second order elastic constants for some other materials (not necessarily under hydrostatic
loading) is given, for example, in [7].

In order to determine the physical meaning and the values of the constants b l-b3 we
consider the thermal expansion test at zero pressure (p = 0), in which case from (3.3) we
have

(3.7)

However, the increase in temperature of the order 100-200 K (the temperature range of
interest in our case) produces a volume expansion small enough that the e2 term in (3.7)
can be neglected, and therefore

(3.8)

The expression (Ko+2b 20) in (3.8) can be identified as a temperature dependent bulk
modulus, K(O) = Ko+2b20. However, for most applications it is sufficient to take the
bulk modulus of solids as independent of temperature[8], although it generally decreases
somewhat with increasing temperature (for example, bulk modulus of copper decreases by
about 3% with a temperature increase of 100 K, from 273 to 373 K[9]). If we therefore
take bulk modulus to be temperature independent, we can take b2 to be equal to zero, and
therefore from (3.8)

(3.9)
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On the other hand, an increase in temperature by dTproduces the relative volume expansion

dV
V == a(T) dT (3.10)

where (I. == a(T) is the temperature dependent coefficient of volume thermal expansion, so
that integration from initial to final state gives

£ == rr a (T) dT.
JTo

The temperature dependence of a can be further represented by a series expansion

<Xl

a(T) == L a.(T-To)" ,
.=0

so that integration of (3.11) gives

If we retain the first two terms in the expansion of (3.12), (3.13) becomes

(3.11 )

(3.12)

(3.13)

(3.14)

Since the coefficients ao and a l can be determined experimentally (numerical values for
various metals are given, for example, in [8]), the comparison of (3.9) and (3.14) gives

(3.15)

Expressions (3.15) can also be obtained starting from the thermodynamic definition of the
coefficient of volume thermal expansion[8, 9]

(3.16)

where K = - (op/o£)o is the bulk modulus. Since

substitution in (3.16) and comparis.on with the two term approximation of (3.12) gives
again (3.15).

The remaining constants (cz and C3) can be determined from the consideration of the
specific heat at constant volume (ct ). It is well known from solid state physics that the
temperature dependence ofthe specific heat at constant volume for most metals is accurately
represented by the Debye theory[9, 10], according to which

(3.17)
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3 iZ

x
3

dx
D(z) = 3" -x-I'zoe -

is Dcbye's function, and T D is the Debye temperature characteristic for each solid. (For
aluminum, for example, TD = 428 K, for iron TD = 467 K, while for other solids the values
are given in [9].) At high temperatures (T» TD), Ce asymptotically approaches the Dulong
Petit value of Ce = 3R, which is for most metals 3R = 24.9381 J mol-I K -I. On the other
hand, using our expression for the entropy (3.4) the specific heat ceat constant volume (Vo)
is

(3.18)

As suggested in [5], the constants C2 and C3 can be determined by fitting (3.18) to (3.17) in
the temperature range of interest (in our case, for example, the temperature range is approx.
273-423 K). To do this we first calculate Ce according to (3.17) at two appropriately
selected temperatures: TDfT = 1.4 and TDfT = 1. (These temperatures would approxi
mately define the temperature range of interest for both aluminum and iron.) Using the
tabular values of Debye's function[II], we find D(1.4) = 0.570793 and D(I) = 0.674416, so
that ce(1.4) = 22.6555 J mol-I K- 1 and ce(l) = 23.7341 J mol-I K- 1• Equating this with
(3.18) at corresponding values of ()

we obtain two algebraic equations for C2 and C3, from which:

_I _I(TD )poTo
C, ~ -25.8384Jmol K T. -0.5407 (~:r c, ~ 4.6571 Jmol-' K-, (~~)"

(3.19)

The specific heat variation (3.18) with constants C2 and C3 determined by (3.19) is plotted,
together with Debye's expression (3.17), in Fig. 1 and satisfactory agreement in the tem
perature range of interest is achieved.

It should be noticed that expression (3.18) gives the temperature variation of the
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specific heat at constant volume Vo, i.e. E: = O. The specific heat at constant volume V(e =1= 0)
is

(3.20)

which, of course, is the form of the Clausius relation[9]

(3.21)

where v = lip is the specific volume. It is clear from (3.20) that for a given temperature (8),
C, decreases as e grows (in absolute value). This is in agreement with (3.17) since, according
to the Griineisen equation, the volume dependence of the Debye temperature is

TD = constant· v- Y

where y is the Griineisen constant (for aluminum, for example, y = 2.1 [8]), so that

(3.22)

(3.23)

and therefore TD increases with compression e, i.e. for a given temperature c, also decreases
with compression e.

4. ADIABATIC LOADING AND SOME NUMERICAL RESULTS

Consider the case of rapidly applied pressure, so that there is no time for significant
heat transfer to take place (but with inertia effects still to be neglected). The process then
can be considered to be adiabatic. Since it is also elastic, with no dissipative effects, the
entropy cannot change and is equal to its initial value (r, = 0). Therefore, from (3.4)

(4.1 )

so that the temperature increase corresponding to given volume strain t: is dT = eTo, where

(4.2)

Since for e = 0 we have e= 0 and since from (3.19) C2 is negative, we must take a minus
sign in expression (4.2). To determine the adiabatically applied pressure which is required
to produce a given amount of volume reduction (VIVo), we first calculate efrom (4.2) and
then with this value and with e = In (VIVo) obtain the pressure from (3.3).

For example, let us consider the case of moderate volume reduction when we pre
sumably can neglect the ale) term in the free energy expansion (3.2), and the 3a3e2 term in
the expression for the pressure (3.3):Reasonable agreement with the experimental pressure
volume data is still achieved, as indicated in [5], due to the presence of the e-' term in the
expression for the pressure. (Note that, although we are not retaining the e3 term in the
expression for the free energy, eis still a finite strain and Koe-'e is still capable ofreproducing
moderately large-fini te strain behaviour. The use ofpowers of Lagrange strain, for example,
does not provide such a close approximation to the geometric nonlinearity.) In this case
then (3.3) becomes

(4.3)

where b2 is taken to be zero, as discussed in the previous section.
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In the case of aluminum, for example, with Ko = 70 GPa, (xo = 6.663x 10- 5 K - I,

(Xl = 6.84x 10- 8 K- 2
, Po = 2.768 g cm- 3

, Tn = 428 K[9,12] and taking To = 283 K, we
obtain from (3.5), (3.15) and (3.19): a2 = 35 GPa, b l = -1.32 GPa, b3 = -0.192 GPa,
C2 = - 0.139 GPa and C3 = - 0.059 GPa. If we wish to calculate the temperature rise and
the needed adiabatically applied pressure for the volume reduction of, say VIVo = 0.85,
i.e. £ = -0.1625, we obtain first from (4.2) (with b2 = 0) () = 0.429, which corresponds
to a temperature increase !1T = OTo = 121.4 K. The required pressure is then from (4.3)
p = 14.09 GPa. It should be mentioned that the inclusion of the a3£3 term in the expression
for free energy [which we have neglected in (4.3)] would make the value of pressure more
accurate, but the temperature rise would still be the same, as calculated by (4.2), which
does not depend on a2 and a).

It is useful to compare these results with those obtained by using the free energy
expansion with terms only up to the second degree, i.e.

(4.4)

In this case we have from (2.6):

(4.5)

(4.6)

so that for the adiabatic compression:

(4.7)

(4.8)

The constants a2 and b l again can be determined from a2 = tKoand b l = -Ko(XoTo, i.e.
by using the values of bulk modulus and coefficient of volume thermal expansion at
temperature T = To (initial values). The constant C2 can be determined by using the
expression for the specific heat

2
c. = - -T (I +(})C2

Po 0

(4.9)

and the Debye value of c. at T = To «() = 0), which is for aluminum c.(T = To) ~ 22.6
J mol- I K - I. In this way we obtain: a2 = 35 GPa, b I = - 1.32 GPa and C2 = - 0.328 GPa,
so that a volume compression of £ = - 0.1625 is followed by a temperature increase of
!1T = 92.5 K, since from (4.7), () = 0.327. The corresponding pressure is from (4.8),
p = 13.89 GPa. We see, therefore, that the first order theory (with free energy function of
the second degree) predicts 28.9 K, i.e. a 23.8% smaller increase in temperature for a given
volume redul=tion of V = 0.85 Vo. On the other hand, the value for the required pressure is
only 0.2 GPa, i.e. 1.4% smaller in the case of the first order theory. This is not surprising
because the difference of 28.9 K in the increase of temperature requires a somewhat higher
pressure (14.09 vs 13.89 GPa) to produce a given amount ofcompressio.n.

Better agreement of the first order theory with the second order theory could be
obtained if we use the mean values of the coefficient of volume thermal expansion (X and
specific heat c. in the interval of expected temperature increase. For example, if we take
(X = 7.347 x 10- 5 K - I and c. = 23.17 J mol- 1 K -I (which are the values approximately at
T = T o+60 K), we get b l = -1.4555 GPa and C2 = -0.2775 GPa, so that () = 0.426,
!1T = 120.5 K and p = 14.11 GPa. However, we cannot in advance know the amount of
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temperature increase, and therefore cannot know the mean vaiues of!1. and c, (except, of
course, by assuming them approximately), so that it is clearly necessary to use the second
order theory to determine the true temperature increase and required pressure for a given
amount of adiabatic compression.

5. DISCUSSION

It can be seen from this paper, that in order to adequately reproduce the thermo
mechanical behaviour of metals under finite volume reduction and large temperature
increase, it is necessary to use the second order thermo-elastic analysis, i.e. to use the free
energy function expanded up to the third degree. In particular, we have seen that in the
case of adiabatically compressed aluminum, the first order theory predicts a 23.8% lower
increase of temperature than the second order theory. The analysis performed in this paper
was restricted to hydrostatic loading, when the solid can be described by an equation
of state which includes just volume strain (or density) and temperature, as in the case
of a fluid. However, inclusion of the nonhydrostatic loading, as it arises in explosive
loadings, would clearly demand elastic-plastic theory, as is done in the analysis of the
propagation of elastic-plastic waves at finite strain[4, 5]. However, at extremely high
pressures (say, higher than 20 GPa), the effects of shear stresses can be neglected in
comparison with the influence ofmean pressure and this again leads to a fluid-like behaviour,
i.e. hydrodynamic theory as discussed in the papers on the wave and shock propagation
phenomena, such as [3,13, 14].

REFERENCES

I. P. W. Bridgman, The comparison of 39 substances to 100000 kg/cm 2 Proc. Am. Acad. Arts Sci. 76, 55-70
(1948).

2. F. D. Murnaghan, Finite Deformation ofan Elastic Solid. Dover, New York (1967).
3. M. H. Rice, R. G. McQueen and J. M. Walsh, Solid State Physics 6 (Edited by F. Seitz and D. Turnbull).

Academic Press, New York (1958).
4. E. H. Lee and D. T. Liu, Finite strain elastic-plastic theory with applications to plane-wave analysis. J. appl.

Phys. 38,19-27 (1967).
5. E. H. Lee and T. Wierzbicki, Analysis of the propagation of plane elastic-plastic waves of finite strain. J.

appl. Mech. 34, 931-936 (1967).
6. V. Lubarda, Pressure-volume relation in solids at high pressure, GAMM Congress '85, Dubrovnik (1985).
7. A. Seeger and O. Buck, Dic expcrimentelle Ermilliung dcr c1astischcn Konslanten hoherer Ordnung.

Z. Natur(orsch 15a, 1056-1067 (1960).
8. H. B. Callen, Thermodynamics. Wiley, New York (1960).
9. J. Kestin, A Course in Thermodynamics, Vol. II. McGraw-Hill, New York (1979).

10. C. Killel, Introduction to Solid Stale Phl'sics. Wiley, New York (1956).
II. M. Abramowitz and I. A. Slegun, Handlwok 11/ Mathematical Functions. U.S. Department 01 Commer~c

(1972).
12. F. A. McClintock and A. S. Argon, Meclulllical Behlll'iolir of Materials. Addison-Wesley (1966).
13. E. D. Royce, PhysiC.\' (If Hi.qh Energy Dellsi/y. Academic Press, New York (1971).
14. P. Germain and E. H. Lee, On shock waves in clastic-plastic solids. J. Meek Phys. Solids 21, 359-382 (1973).


